
ahidev

ahidev ii

COLLABORATORS

TITLE :

ahidev

ACTION NAME DATE SIGNATURE

WRITTEN BY July 7, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

ahidev iii

Contents

1 ahidev 1

1.1 ahidev.guide . 1

1.2 ahidev.guide/Overview . 2

1.3 ahidev.guide/Distribution . 3

1.4 ahidev.guide/The Author . 3

1.5 ahidev.guide/Definitions . 4

1.6 ahidev.guide/Function Interface . 4

1.7 ahidev.guide/Guidelines . 5

1.8 ahidev.guide/Opening And Closing ahi.device For Low-level Access . 6

1.9 ahidev.guide/Obtaining The Hardware . 7

1.10 ahidev.guide/Declaring Sounds . 9

1.11 ahidev.guide/Making Noise . 11

1.12 ahidev.guide/Device Interface . 13

1.13 ahidev.guide/Opening And Closing ahi.device For High-level Access . 13

1.14 ahidev.guide/Reading From The Device . 15

1.15 ahidev.guide/Writing To The Device . 15

1.16 ahidev.guide/Data Types And Structures . 17

1.17 ahidev.guide/Data Types . 17

1.18 ahidev.guide/Structures . 18

1.19 ahidev.guide/Concept Index . 18

1.20 ahidev.guide/Data Type Index . 21

1.21 ahidev.guide/Function Index . 22

1.22 ahidev.guide/Variable Index . 23

ahidev 1 / 25

Chapter 1

ahidev

1.1 ahidev.guide

AHI Developer’s Guide

For AHI version 4.20. Document version 4.11 (1999-03-28).

Copyright (C) 1994-1999 Martin Blom

The latest release of AHI can always be found at
http://www.lysator.liu.se/~lcs/ahi.html.

Overview
Brief introduction

Distribution
What you are allowed to do and not

The Author
Who designed it?

Definitions
Terms used in this document

Function Interface
The low-level API

Device Interface
The high-level API

Data Types And Structures
The structures explained

Concept Index
Concept Index

ahidev 2 / 25

Data Type Index
Data Type Index

Function Index
Function Index

Variable Index
Variable Index

-- The Detailed Node Listing --

Function Interface

Guidelines

Opening And Closing ahi.device For Low-level Access

Obtaining The Hardware

Declaring Sounds

Making Noise
Device Interface

Opening And Closing ahi.device For High-level Access

Reading From The Device

Writing To The Device
Data Types And Structures

Data Types

Structures

1.2 ahidev.guide/Overview

Overview

This document was written in order to make it easier for developers
to understand and use AHI in their own productions, and write Software
That Works(TM).

ahi.device has two different API’s; one library-like function
interface (low-level), and one "normal" device interface (high-level).
Each of them serves different purposes. The low-level interface is
targeting music players, games and real-time applications. The
high-level interface is targeting applications that just want to have a
sample played, play audio streams or record samples as easily as
possible.

ahidev 3 / 25

As with everything else, it is important that you chose the right
tool for the job--you’ll only get frustrated otherwise.

Not everything about AHI is documented here; for more information,
see ‘AHI User’s Guide’ and the autodocs.

1.3 ahidev.guide/Distribution

Distribution

Copyright (C) 1994-1999 Martin Blom

AHI is available as freeware. That is, it may be freely distributed
in unmodified form with no changes what so ever, but you may not charge
more than a nominal fee covering distribution costs. However, donations
are welcome (see ‘AHI User’s Guide’).

If you use this software in a commercial or shareware product, please
consider giving the author (see

The Author
)--and preferably each one

of the contributors too (see ‘AHI User’s Guide’)--an original or
registered version of your work. Should you want to distribute the AHI
software with your own product, there is really nothing to consider, is
it?

If you wish to distribute this software with a hardware product,
contact the author (see

The Author
). Distribution of AHI with hardware

products is not free.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4 ahidev.guide/The Author

ahidev 4 / 25

The Author

The author can be reached at the following addresses:

Electronic mail
<martin@blom.org>

Standard mail
Martin Blom
Alsättersgatan 15A:24
SE-584 35 Linköping
SWEDEN

World-Wide Web
http://martin.blom.org

1.5 ahidev.guide/Definitions

Definitions

Following are some general definitions of terms that are used in this
document.

Sample
A sample is one binary number, representing the amplitude at a
fixed point in time. A sample is often stored as an 8 bit signed
integer, a 16 bit signed integer, a 32 bit floating point number
etc. AHI only supports integers.

Sample frame
In mono environments, a sample frame is the same as a sample. In
stereo environments, a sample frame is a tuple of two samples.
The first member is for the left channel, the second for the right.

Sound
Many sample frames stored in sequence as an array can be called a
sound. A sound is, however, not limited to being formed by
samples, it can also be parameters to an analog synth or a MIDI
instrument, or be white noise. AHI only supports sounds formed by
samples.

1.6 ahidev.guide/Function Interface

Function Interface

The device has, in addition to the usual I/O request protocol, a set

ahidev 5 / 25

of functions that allows the programmer to gain full control (at least
as much as possible with device independence) over the audio hardware.
The advantages are low overhead and much more advanced control over the
playing sounds. The disadvantages are greater complexity and only one
user per sound card.

If you want to play music or sound effects for a game, record in high
quality or want to do realtime effects, this is the API to use.

Guidelines

Opening And Closing ahi.device For Low-level Access

Obtaining The Hardware

Declaring Sounds

Making Noise

1.7 ahidev.guide/Guidelines

Guidelines
==========

Follow The Rules

It’s really simple. If I tell you to check return values, check
sample types when recording, not to trash d2-d7/a2-a6 in hooks, or not
to call AHI_ControlAudio() with the AHIC_Play tag from interrupts or
hooks, you do as you are told.

The Library Base

The AHIBase structure is private, so are the sub libraries’ library
base structures. Don’t try to be clever.

The Audio Database

The implementation of the database is private, and may change any
time. ahi.device provides functions access the information in the
database (AHI_NextAudioID(), AHI_GetAudioAttrsA() and
AHI_BestAudioIDA()).

User Hooks

All user hooks must follow normal register conventions, which means
that d2-d7 and a2-a6 must be preserved. They may be called from an
interrupt, but you cannot count on that; it can be your own process or

ahidev 6 / 25

another process. Don’t assume the system is in single-thread mode.
Never spend much time in a hook, get the work done as quick as possible
and then return.

Function Calls From Other Tasks, Interrupts Or User Hooks

The AHIAudioCtrl structure may not be shared with other
tasks/threads. The task that called AHI_AllocAudioA() must do all
other calls too (except those callable from interrupts).

Only calls specifically said to be callable from interrupts may be
called from user hooks or interrupts. Note that AHI_ControlAudioA() has
some tags that must not be present when called from an interrupt.

Multitasking

Most audio drivers need multitasking to be turned on to function
properly. Don’t turn it off while using the device.

1.8 ahidev.guide/Opening And Closing ahi.device For Low-level Access

Opening And Closing ahi.device For Low-level Access
===

Not too hard. Just open ahi.device unit AHI_NO_UNIT and initialize
AHIBase. After that you can access all the functions of the device
just as if you had opened a standard shared library.

Assembler

For the assembler programmer there are two handy macros: OPENAHI and
CLOSEAHI. Here is a small example how to use them:

OPENAHI 4 ;Open at least version 4.
lea _AHIBase(pc),a0
move.l d0,(a0)
beq error

; AHI’s functions can now be called as normal library functions:
move.l _AHIBase(pc),a6
moveq #AHI_INVALID_ID,d0
jsr _LVOAHI_NextAudioID(a6)

error:
CLOSEAHI
rts

Note that you have to execute the CLOSEAHI macro even if OPENAHI
failed!

C

ahidev 7 / 25

-

For the C programmer, here is how it should be done:

struct Library *AHIBase;
struct MsgPort *AHImp=NULL;
struct AHIRequest *AHIio=NULL;
BYTE AHIDevice=-1;

if(AHImp = CreateMsgPort())
{

if(AHIio = (struct AHIRequest *) CreateIORequest(
AHImp, sizeof(struct AHIRequest)))

{
AHIio->ahir_Version = 4; /* Open at least version 4. */
if(!(AHIDevice = OpenDevice(AHINAME, AHI_NO_UNIT,

(struct IORequest *) AHIio, NULL)))
{

AHIBase = (struct Library *) AHIio->ahir_Std.io_Device;

// AHI’s functions can now be called as normal library functions:
AHI_NextAudioID(AHI_INVALID_ID);

CloseDevice((struct IORequest *) AHIio);
AHIDevice = -1;

}
DeleteIORequest((struct IORequest *) AHIio);
AHIio = NULL;

}
DeleteMsgPort(AHImp);
AHImp = NULL;

}

1.9 ahidev.guide/Obtaining The Hardware

Obtaining The Hardware
======================

If you wish to call any other function than

* AHI_AllocAudioRequestA()

* AHI_AudioRequestA()

* AHI_BestAudioIDA()

* AHI_FreeAudioRequest()

* AHI_GetAudioAttrsA()

* AHI_NextAudioID()

* AHI_SampleFrameSize()

ahidev 8 / 25

...you have to allocate the actual sound hardware. This is done with
AHI_AllocAudioA(). AHI_AllocAudioA() returns an AHIAudioCtrl
structure, or NULL if the hardware could not be allocated. The
AHIAudioCtrl structure has only one public field, ahiac_UserData. This
is unused by AHI and you may store anything you like here.

If AHI_AllocAudioA() fails it is important that you handle the
situation gracefully.

When you are finished playing or recording, call AHI_FreeAudio() to
deallocate the hardware and other resources allocated by
AHI_AllocAudioA(). AHI_FreeAudio() also deallocates all loaded sounds
(see

Declaring Sounds
).

AHI_AllocAudioA() Tags

AHI_AllocAudioA() takes several tags as input.

AHIA_AudioID
This is the audio mode to be used. You must not use any hardcoded
values other than AHI_DEFAULT_ID, which is the user’s default
fallback ID. In most cases you should ask the user for an ID code
(with AHI_AudioRequestA()) and then store the value in your
settings file.

AHIA_MixFreq
This is the mixing frequency to be used. The actual frequency
will be rounded to the nearest frequency supported by the sound
hardware. To find the actual frequency, use AHI_GetAudioAttrsA().
If omitted or AHI_DEFAULT_FREQ, the user’s preferred fallback
frequency will be used. In most cases you should ask the user for
a frequency (with AHI_AudioRequestA()) and then store the value in
your settings file.

AHIA_Channels
All sounds are played on a channel, and this tag selects how many
you wish to use. In general it takes more CPU power the more
channels you use and the volume gets lower and lower.

AHIA_Sounds
You must tell AHI how many different sounds you are going to play.
See

Declaring Sounds
for more information.

AHIA_SoundFunc
With this tag you tell AHI to call a hook when a sound has been
started. It works just like Paula’s audio interrupts. The hook
receives an AHISoundMessage structure as message.
AHISoundMessage->ahism_Channel indicates which channel the sound
that caused the hook to be called is played on.

AHIA_PlayerFunc
If you are going to play a musical score, you should use this

ahidev 9 / 25

"interrupt" source instead of VBLANK or CIA timers in order to get
the best result with all audio drivers. If you cannot use this,
you must not use any "non-realtime" modes (see
AHI_GetAudioAttrsA() in the autodocs, the AHIDB_Realtime tag).

AHIA_PlayerFreq
If non-zero, it enables timing and specifies how many times per
second PlayerFunc will be called. This must be specified if
AHIA_PlayerFunc is! It is suggested that you keep the frequency
below 100-200 Hz. Since the frequency is a fixpoint number
AHIA_PlayerFreq should be less than 13107200 (that’s 200 Hz).

AHIA_MinPlayerFreq
The minimum frequency (AHIA_PlayerFreq) you will use. You should
always supply this if you are using the device’s interrupt feature!

AHIA_MaxPlayerFreq
The maximum frequency (AHIA_PlayerFreq) you will use. You should
always supply this if you are using the device’s interrupt feature!

AHIA_RecordFunc
This hook will be called regularly when sampling is turned on (see
AHI_ControlAudioA()). It is important that you always check the
format of the sampled data, and ignore it if you can’t parse it.
Since this hook may be called from an interrupt, it is not legal
to directly Write() the buffer to disk. To record directly to
harddisk you have to copy the samples to another buffer and signal
a process to save it. To find out the required size of the
buffer, see AHI_GetAudioAttrsA() in the autodocs, the
AHIDB_MaxRecordSamples tag.

AHIA_UserData
Can be used to initialize the ahiac_UserData field. You do not
have to use this tag to change ahiac_UserData, you may write to it
directly.

1.10 ahidev.guide/Declaring Sounds

Declaring Sounds
================

Before you can play a sample array, you must AHI_LoadSound() it.
Why? Because if AHI knows what kind of sounds that will be played
later, tables and stuff can be set up in advance. Some drivers may even
upload the samples to the sound cards local RAM and play all samples
from there, drastically reducing CPU and bus load.

You should AHI_LoadSound() the most important sounds first, since
the sound cards RAM may not be large enough to hold all your sounds.

AHI_LoadSound() also associates each sound or sample array with a
number, which is later used to refer to that particular sound.

ahidev 10 / 25

There are 2 types of sounds, namely AHIST_SAMPLE and
AHIST_DYNAMICSAMPLE.

AHIST_SAMPLE
This is used for static samples. Most sounds that will be played
are of this type. Once the samples has been "loaded", you may not
alter the memory where the samples are located. You may, however,
read from it.

AHIST_DYNAMICSAMPLE
If you wish to play samples that you calculate in realtime, or
load in portions from disk, you must use this type. These samples
will never be uploaded to a sound cards local RAM, but always
played from the normal memory. There is a catch, however.
Because of the fact that the sound is mixed in chunks, you must
have a certain number of samples in memory before you start a
sound of this type. To calculate the size of the buffer (in
samples), use the following formula:

size = samples * Fs / Fm

where samples is the value returned from AHI_GetAudioAttrsA() when
called with the AHIDB_MaxPlaySamples tag, Fs is the highest
frequency the sound will be played at and Fm is the actual mixing
frequency (AHI_ControlAudioA()/AHIC_MixFreq_Query).

The samples can be in one of four different formats, named AHIST_M8S,
AHIST_S8S, AHIST_M16S, and AHIST_S16S.

AHIST_M8S
This is an 8 bit mono sound. Each sample frame is just one signed
byte.

AHIST_S8S
This is an 8 bit stereo sound. Each sample frame is one signed
byte representing the left channel, followed by another one for
the right channel.

AHIST_M16S
This is a 16 bit mono sound. Each sample frame is just one signed
16 bit word, in big endian/network order format (most significant
byte first).

AHIST_S16S
This is a 16 bit stereo sound. Each sample frame is one signed 16
bit word, in big endian/network order format (most significant
byte first) representing the left channel, followed by another one
for the right channel.

If you know that you won’t use a sound anymore, call
AHI_UnloadSound(). AHI_FreeAudio() will also do that for you for any
sounds left when called.

There is no need to place a sample array in Chip memory, but it must
not be swapped out! Allocate your sample memory with the MEMF_PUBLIC
flag set. If you wish to have your samples in virtual memory, you have
to write a double-buffer routine that copies a chunk of memory to a

ahidev 11 / 25

MEMF_PUBLIC buffer. The SoundFunc should signal a task to do the
transfer, since it may run in supervisor mode (see AHI_AllocAudioA()).

1.11 ahidev.guide/Making Noise

Making Noise
============

After you have allocated the sound hardware and declared all your
sounds, you’re ready to start playback. This is done with a call to
AHI_ControlAudioA(), with the AHIC_Play tag set to TRUE. When this
function returns the PlayerFunc (see AHI_AllocAudioA()) is active, and
the audio driver is feeding silence to the sound hardware.

Playing A Sound

All you have to do now is to set the desired sound, it’s frequency
and volume. This is done with AHI_SetSound(), AHI_SetFreq() and
AHI_SetVol(). Make sure the AHISF_IMM flag is set for all these
function’s FLAG argument. And don’t try to modify a channel that is
out of range! If you have allocated 4 channels you may only modify
channels 0-3.

The sound will not start until both AHI_SetSound() and AHI_SetFreq()
has been called. The sound will play even if AHI_SetVol() was not
called, but it will play completely silent. If you wish to temporary
stop a sound, set its frequency to 0. When you change the frequency
again, the sound will continue where it were.

When the sound has been started it will play to the end and then
repeat. In order to play a one-shot sound you have use the AHI_PlayA()
function, or install a sound interrupt using the AHIA_SoundFunc tag
with AHI_AllocAudioA(). For more information about using sound
interrupts, see below.

A little note regarding AHI_SetSound(): OFFSET is the first sample
that will be played, both when playing backwards and forwards. This
means that if you call AHI_SetSound() with OFFSET 0 and LENGTH 4,
sample 0,1,2 and 3 will be played. If you call AHI_SetSound() with
OFFSET 3 and LENGTH -4, sample 3,2,1 and 0 will be played.

Also note that playing very short sounds will be very CPU intensive,
since there are many tasks that must be done each time a sound has
reached its end (like starting the next one, calling the SoundFunc,
etc.). Therefore, it is recommended that you "unroll" short sounds a
couple of times before you play them. How many times you should
unroll? Well, it depends on the situation, of course, but try making
the sound a thousand samples long if you can. Naturally, if you need
your SoundFunc to be called, you cannot unroll.

Playing One-shot Sounds And Advanced Loops
--

ahidev 12 / 25

Some changes has been made since earlier releases. One-shot sounds
and sounds with only one loop segment can now be played without using
sample interrupts. This is possible because one of the restrictions
regarding the AHISF_IMM flag has been removed.

The AHISF_IMM flag determines if AHI_SetSound(), AHI_SetFreq() and
AHI_SetVol() should take effect immediately or when the current sound
has reached its end. The rules for this flags are:

* If used inside a sample interrupt (SoundFunc): Must be cleared.

* If used inside a player interrupt (PlayerFunc): May be set or
cleared.

* If used elsewhere: Must be set.

What does this mean? It means that if all you want to do is to play
a one-shot sound from inside a PlayerFunc, you can do that by first
calling AHI_SetSound(), AHI_SetFreq() and AHI_SetVol() with AHISF_IMM
set, and then use AHI_SetSound(ch, AHI_NOSOUND, 0, 0, actrl, 0L) to
stop the sound when it has reached the end. You can also set one loop
segment this way.

AHI_PlayA() was added in AHI version 4, and combines AHI_SetSound(),
AHI_SetFreq() and AHI_SetVol() into one tag-based function. It also
allows you to set one loop and play one-shot sounds.

To play a sound with more than one loop segment or ping-pong
looping, a sample interrupt needs to be used. AHI’s SoundFunc works
like Paula’s interrupts and is very easy to use.

The SoundFunc hook will be called with an AHIAudioCtrl structure as
object and an AHISoundMessage structure as message. ahism_Channel
indicates which channel caused the hook to be called.

An example SoundFunc which handles the repeat part of an instrument
can look like this (SAS/C code):

__asm __saveds ULONG SoundFunc(register __a0 struct Hook *hook,
register __a2 struct AHIAudioCtrl *actrl,
register __a1 struct AHISoundMessage *chan)

{
if(ChannelDatas[chan->ahism_Channel].Length)

AHI_SetSound(chan->ahism_Channel, 0,
(ULONG) ChannelDatas[chan->ahism_Channel].Address,
ChannelDatas[chan->ahism_Channel].Length,
actrl, NULL);

else
AHI_SetSound(chan->ahism_Channel, AHI_NOSOUND,

NULL, NULL, actrl, NULL);
return NULL;

}

This example is from an old version of the AHI NotePlayer for
DeliTracker 2. ChannelDatas is an array where the start and length of
the repeat part is stored. Here, a repeat length of zero indicates a
one-shot sound. Note that this particular example only uses one sound

ahidev 13 / 25

(0). For applications using multiple sounds, the sound number would
have to be stored in the array as well.

Once again, note that the AHISF_IMM flag should never be set in a
SoundFunc hook!

Tricks With The Volume

Starting with V4, AHI_SetVol() can take both negative volume and pan
parameters. If you set the volume to a negative value, the sample
will, if the audio mode supports it, invert each sample before playing.
If pan is negative, the sample will be encoded to go to the surround
speakers.

1.12 ahidev.guide/Device Interface

Device Interface

The I/O request protocol makes it very easy to play audio streams,
sounds from disk and non time-critical sound effects in a multitasking
friendly way. Recoding is just as easy, on behalf of quality. Several
programs can play sounds at the same time, and even record at the same
time if your hardware is full duplex.

If you want to write a sample player, play (warning?) sounds in your
applications, play an audio stream from a CD via the SCSI/IDE bus,
write a voice command utility etc., this is the API to use.

Note that while all the low-level functions (see
Function Interface
)

count lengths and offsets in sample frames, the device interface--like
all Amiga devices--uses bytes.

Opening And Closing ahi.device For High-level Access

Reading From The Device

Writing To The Device

1.13 ahidev.guide/Opening And Closing ahi.device For High-level Access

Opening And Closing ahi.device For High-level Access
==

Four primary steps are required to open ahi.device:

ahidev 14 / 25

* Create a message port using CreateMsgPort(). Reply messages from
the device must be directed to a message port.

* Create an extended I/O request structure of type AHIRequest using
CreateIORequest(). CreateIORequest() will initialize the I/O
request to point to your reply port.

* Specify which version of the device you need. The lowest
supported version is 4. Version 1 and 3 are obsolete, and version
2 only has the low-level API.

* Open ahi.device unit AHI_DEFAULT_UNIT or any other unit the user
has specified with, for example, a UNIT tooltype. Call
OpenDevice(), passing the I/O request.

Each OpenDevice() must eventually be matched by a call to
CloseDevice(). When the last close is performed, the device will
deallocate all resources.

All I/O requests must be completed before CloseDevice(). Abort any
pending requests with AbortIO().

Example:

struct MsgPort *AHImp = NULL;
struct AHIRequest *AHIio = NULL;
BYTE AHIDevice = -1;
UBYTE unit = AHI_DEFAULT_UNIT;

/* Check if user wants another unit here... */

if(AHImp = CreateMsgPort())
{

if(AHIio = (struct AHIRequest *)
CreateIORequest(AHImp, sizeof(struct AHIRequest)))

{
AHIio->ahir_Version = 4;
if(!(AHIDevice = OpenDevice(AHINAME, unit,

(struct IORequest *) AHIio, NULL)))
{

/* Send commands to the device here... */

if(! CheckIO((struct IORequest *) AHIio))
{

AbortIO((struct IORequest *) AHIio);
}

WaitIO((struct IORequest *) AHIio);

CloseDevice((struct IORequest *) AHIio);
AHIDevice = -1;

}
DeleteIORequest((struct IORequest *) AHIio);

ahidev 15 / 25

AHIio = NULL;
}
DeleteMsgPort(AHImp);
AHImp = NULL;

}

1.14 ahidev.guide/Reading From The Device

Reading From The Device
=======================

You read from ahi.device by passing an AHIRequest to the device with
CMD_READ set in io_Command, the number of bytes to be read set in
io_Length, the address of the read buffer set in io_Data, the desired
sample format set in ahir_Type and the desired sample frequency set in
ahir_Frequency. The first read command in a sequence should also have
io_Offset set to 0. io_Length must be an even multiple of the sample
frame size.

Double Buffering

To do double buffering, just fill the first buffer with DoIO() and
io_Offset set to 0, then start filling the second buffer with SendIO()
using the same I/O request (but don’t clear io_Offset!). After you
have processed the first buffer, wait until the I/O request is finished
and start over with SendIO() on the first buffer.

Distortion

The samples will automatically be converted to the sample format set
in ahir_Type and to the sample frequency set in ahir_Frequency.
Because it is quite unlikely that you ask for the same sample frequency
the user has chosen in the preference program, chances that the quality
is lower than expected are pretty high. The worst problem is probably
the anti-aliasing filter before the A/D converter. If the user has
selected a higher sampling/mixing frequency than you request, the
signal will be distorted according to the Nyquist sampling theorem.
If, on the other hand, the user has selected a lower sampling/mixing
frequency than you request, the signal will not be distorted but rather
bandlimited more than necessary.

1.15 ahidev.guide/Writing To The Device

Writing To The Device
=====================

You write to the device by passing an AHIRequest to the device with
CMD_WRITE set in io_Command, the precedence in

ahidev 16 / 25

io_Message.mn_Node.ln_Pri, the number of bytes to be written in
io_Length, the address of the write buffer set in io_Data, the sample
format set in ahir_Type, the desired sample frequency set in
ahir_Frequency, the desired volume set in ahir_Volume and the desired
stereo position set in ahir_Position. Unless you are doing double
buffering, ahir_Link should be set to NULL. io_Length must be an even
multiple of the sample frame size.

Double Buffering

To do double buffering, you need two I/O requests. Create the
second one by making a copy of the request you used in OpenDevice().
Start the first with SendIO(). Set ahir_Link in the second request to
the address of the first request, and SendIO() it. Wait on the first,
fill the first buffer again and repeat, this time with ahir_Link of the
first buffer set to the address of the second I/O request.

Distortion

The problems with aliasing are present but not as obvious as with
reading. Just make sure your source data is bandlimited correctly, and
do not play samples at a lower frequency than they were recorded.

Playing multiple sounds at the same time
--

If you want to play several sounds at the same time, just make a new
copy of the I/O request you used in OpenDevice(), and CMD_WRITE it.
The user has set the number of channels available in the preference
tool, and if too many requests are sent to the device the one with
lowest precedence will be muted. When a request is finished, the muted
request with the highest precedence will be played. Note that all
muted requests continue to play silently, so the programmer will not
have to worry if there are enough channels or not.

Suggested precedences

The precedences to use depend on what kind of sound you are playing.
The recommended precedences are the same as for audio.device, listed in
‘AMIGA ROM Kernel Reference manual - Devices’. Reprinted without
permission. So sue me.

Precedences | Type of sound
-------------+--

127 | Unstoppable. Sounds first allocated at lower
| precedencies, then set to this highest level.

90 - 100 | Emergencies. Alert, urgent situation that requires
| immediate action.

80 - 90 | Annunciators. Attention, bell (CTRL-G).
75 | Speech. Synthesized or recorded speech

| (narrator.device).
50 - 70 | Sonic cues. Sounds that provide information that is not

| provided by graphics. Only the beginning of of each sound
| should be at this level; the rest should ne set to sound

ahidev 17 / 25

| effects level.
-50 - 50 | Music program. Musical notes in a music-oriented program.

| The higher levels should be used for the attack portions
| of each note.

-70 - -50 | Sound effects. Sounds used in conjunction with graphics.
| More important sounds should use higher levels.

-100 - -80 | Background. Theme music and restartable background sounds.
-128 | Silence. Lowest level (freeing the channel completely is

| preferred).

Right. As you can see, some things do not apply to ahi.device.
First, there is no way to change the precedence of a playing sound, so
the precedences should be set from the beginning. Second, it is not
recommended to use the device interface to play music. However,
playing an audio stream from CD or disk comes very close. Third, there
are no channels to free in AHI since they are dynamically allocated by
the device.

1.16 ahidev.guide/Data Types And Structures

Data Types And Structures

In this chapter some of the data types and structures used will be
explained. For more information, please consult the autodocs and the
include files.

Data Types

Structures

1.17 ahidev.guide/Data Types

Data Types
==========

Fixed

Fixed is a signed long integer. It is used to represent decimal
numbers without using floating point arithmetics. The decimal point is
assumed to be in the middle of the 32 bit integer, thus giving 16 bits
for the integer part of the number and 16 bits for the fraction. The
largest number that can be stored in a Fixed is +32767.999984741, and
the lowest number is -32768.

Example:

ahidev 18 / 25

Decimal | Fixed
--------+----------
1.0 | 0x00010000
0.5 | 0x00008000
0.25 | 0x00004000
0 | 0x00000000
-0.25 | 0xffffc000
-0.5 | 0xffff8000
-1.0 | 0xffff0000

sposition

sposition (stereo position) is a Fixed, and is used to represent the
stereo position of a sound. 0 is far left, 0.5 is center and 1.0 is
far right.

1.18 ahidev.guide/Structures

Structures
==========

AHIUnitPrefs And AHIGlobalPrefs

These structures are used in the AHIU and AHIG chunks, respective,
which are part of the settings file (ENV:Sys/ahi.prefs), The file is
read by AHI on each call to OpenDevice(), just before the audio
hardware is allocated.

AHIUnitPrefs specifies the audio mode and its parameters to use for
each device unit (currently 0-3 and AHI_NO_UNIT; unit 0 is also called
AHI_DEFAULT_UNIT).

AHIGlobalPrefs contains some global options that can be used to gain
speed on slow CPUs, the global debug level and a protection against CPU
overload. The debug level specifies which of the functions in AHI
should print debugging information to the serial port (the output can be
redirected to a console window or a file with tools like Sushi (1)).

---------- Footnotes ----------

(1) Available from AmiNet, for example
ftp://ftp.germany.aminet.org/pub/aminet/dev/debug/Sushi.lha.

1.19 ahidev.guide/Concept Index

Concept Index

ahidev 19 / 25

Audio streams, playing
Device Interface

Author of AHI
The Author

Copyright
Distribution

Data Types
Data Types

Data Types And Structures
Data Types And Structures

Definitions
Definitions

Disclaimer
Distribution

Distortion, playing
Writing To The Device

Distortion, recording
Reading From The Device

Distribution
Distribution

Double Buffering, reading
Reading From The Device

Double Buffering, writing
Writing To The Device

Function Interface
Function Interface

Games, music
Function Interface

Games, sound effects
Function Interface

Guidelines
Guidelines

Hooks
Guidelines

Legal nonsense
Distribution

Library base
Guidelines

ahidev 20 / 25

License
Distribution

Loading Sounds
Declaring Sounds

Multitasking
Guidelines

Music, games
Function Interface

Music, streams from disk
Device Interface

Overview
Overview

Playing
Writing To The Device

Playing audio streams
Device Interface

Precedences
Writing To The Device

Programming guidelines
Guidelines

Reading
Reading From The Device

Realtime effects
Function Interface

Recording
Reading From The Device

Recording, high quality
Function Interface

Recording, quick and easy
Device Interface

Recursion
Concept Index

Sample
Definitions

Sample frame
Definitions

Software license
Distribution

ahidev 21 / 25

Sound
Definitions

Sound effects, games
Function Interface

Sound effects, system
Device Interface

Structures
Structures

Surround sound
Making Noise

The Audio Database
Guidelines

The Author
The Author

Unloading Sounds
Declaring Sounds

Writing
Writing To The Device

1.20 ahidev.guide/Data Type Index

Data Type Index

AHIAudioCtrl
Obtaining The Hardware

AHIBase
Guidelines

AHIGlobalPrefs
Structures

AHIRequest
Opening And Closing ahi.device For High-level Access

AHISoundMessage
Obtaining The Hardware

AHIUnitPrefs
Structures

ahidev 22 / 25

Fixed
Data Types

sposition
Data Types

1.21 ahidev.guide/Function Index

Function Index

AHI_AllocAudioA()
Obtaining The Hardware

AHI_BestAudioIDA()
Guidelines

AHI_ControlAudioA()
Making Noise

AHI_FreeAudio()
Obtaining The Hardware

AHI_GetAudioAttrsA()
Guidelines

AHI_LoadSound()
Declaring Sounds

AHI_NextAudioID()
Guidelines

AHI_PlayA()
Making Noise

AHI_SetFreq()
Making Noise

AHI_SetSound()
Making Noise

AHI_SetVol()
Making Noise

AHI_UnloadSound()
Declaring Sounds

ahidev 23 / 25

1.22 ahidev.guide/Variable Index

Variable Index

AHI_DEFAULT_FREQ
Obtaining The Hardware

AHI_DEFAULT_ID
Obtaining The Hardware

AHI_DEFAULT_UNIT
Opening And Closing ahi.device For High-level Access

AHIA_AudioID
Obtaining The Hardware

AHIA_Channels
Obtaining The Hardware

AHIA_MaxPlayerFreq
Obtaining The Hardware

AHIA_MinPlayerFreq
Obtaining The Hardware

AHIA_MixFreq
Obtaining The Hardware

AHIA_PlayerFreq
Obtaining The Hardware

AHIA_PlayerFunc
Obtaining The Hardware

AHIA_RecordFunc
Obtaining The Hardware

AHIA_SoundFunc
Obtaining The Hardware

AHIA_Sounds
Obtaining The Hardware

AHIA_UserData
Obtaining The Hardware

ahiac_UserData
Obtaining The Hardware

AHIC_Play
Making Noise

ahidev 24 / 25

ahir_Frequency <1>
Reading From The Device

ahir_Frequency
Writing To The Device

ahir_Link
Writing To The Device

ahir_Position
Writing To The Device

ahir_Type <1>
Reading From The Device

ahir_Type
Writing To The Device

ahir_Volume
Writing To The Device

AHISF_IMM
Making Noise

ahism_Channel
Obtaining The Hardware

AHIST_DYNAMICSAMPLE
Declaring Sounds

AHIST_M16S
Declaring Sounds

AHIST_M8S
Declaring Sounds

AHIST_S16S
Declaring Sounds

AHIST_S8S
Declaring Sounds

AHIST_SAMPLE
Declaring Sounds

CMD_READ
Reading From The Device

CMD_WRITE
Writing To The Device

io_Command <1>
Reading From The Device

io_Command
Writing To The Device

ahidev 25 / 25

io_Data <1>
Writing To The Device

io_Data
Reading From The Device

io_Length <1>
Reading From The Device

io_Length
Writing To The Device

io_Offset
Reading From The Device

ln_Pri
Writing To The Device

	ahidev
	ahidev.guide
	ahidev.guide/Overview
	ahidev.guide/Distribution
	ahidev.guide/The Author
	ahidev.guide/Definitions
	ahidev.guide/Function Interface
	ahidev.guide/Guidelines
	ahidev.guide/Opening And Closing ahi.device For Low-level Access
	ahidev.guide/Obtaining The Hardware
	ahidev.guide/Declaring Sounds
	ahidev.guide/Making Noise
	ahidev.guide/Device Interface
	ahidev.guide/Opening And Closing ahi.device For High-level Access
	ahidev.guide/Reading From The Device
	ahidev.guide/Writing To The Device
	ahidev.guide/Data Types And Structures
	ahidev.guide/Data Types
	ahidev.guide/Structures
	ahidev.guide/Concept Index
	ahidev.guide/Data Type Index
	ahidev.guide/Function Index
	ahidev.guide/Variable Index

